Skip to main content

- उद्योग-संगत नाइट्राइड सेमीकंडक्टर्स के साथ मस्तिष्क जैसी गणना के लिए कृत्रिम सिनैप्स विकसित

उद्योग-संगत नाइट्राइड सेमीकंडक्टर्स के साथ मस्तिष्क जैसी गणना (कंप्यूटिंग) के लिए कृत्रिम सिनैप्स विकसित

Artificial synapse developed for brain-like computing with industry-compatible Nitride Semiconductors

वैज्ञानिकों ने मस्तिष्क जैसी गणना क्षमता (कंप्यूटिंग) विकसित करने के लिए सर्वोच्च स्थिरता और पूरक धातु-ऑक्साइड-सेमीकंडक्टर (CMOS) अनुकूलता के साथ एक अर्धचालक सामग्री स्कैंडियम नाइट्राइड  (एससीएन–ScN) का उपयोग किया है। यह आविष्कार अपेक्षाकृत कम ऊर्जा लागत पर स्थिर, सीएमओएस-संगत ऑप्टोइलेक्ट्रॉनिक सिनैप्टिक कार्यात्मकताओं के लिए एक नई सामग्री प्रदान कर सकता है इसलिए इसके एक औद्योगिक उत्पाद में अनुप्रयुक्त होने की संभावित क्षमता है।


पारंपरिक कंप्यूटरों में स्मृति भंडारण और प्रसंस्करण इकाई (मेमोरी स्टोरेज एंड प्रोसेसिंग यूनिट) भौतिक रूप से अलग होते हैं। परिणामस्वरूप  संचालन (ऑपरेशन) के दौरान इन इकाइयों के बीच डेटा स्थानांतरित करने में अत्यधिक ऊर्जा और समय लगता है। इसके विपरी मानव मस्तिष्क एक सर्वोच्च जैविक कंप्यूटर है जो एक सिनैप्स (दो न्यूरॉन्स के बीच संबंध) की उपस्थिति के कारण छोटा और अधिक कुशल है होने के साथ ही प्रोसेसर और मेमोरी स्टोरेज यूनिट दोनों की भूमिका निभाता है। कृत्रिम बुद्धिमत्ता (आर्टिफिशियल इंटेलिजेंस) के वर्तमान युग में  मस्तिष्क जैसा कंप्यूटिंग दृष्टिकोण बढ़ती गणनात्मक (कम्प्यूटेशनल) आवश्यकताओं को पूरा करने में सहायता कर सकता है। न्यूरोमॉर्फिक हार्डवेयर के विकास का उद्देश्य एक जैविक सिनैप्स की ऐसी नकल करना है जो उत्तेजनाओं द्वारा उत्पन्न सिग्नल की निगरानी और उन्हें याद रखती है। वैज्ञानिक एक कृत्रिम सिनैप्टिक डिवाइस बनाने का प्रयास कर रहे हैं जो आरसी देरी से ग्रस्त नहीं है, बड़ी बैंडविड्थ प्रदर्शित करता है, कम ऊर्जा का उपभोग करता है, और स्थिर, मापनीय (स्केलेबल) और सीएमओएस-संगत है।


भारत सरकार के विज्ञान और प्रौद्योगिकी विभाग के एक स्वायत्त संस्थान, बेंगलुरु के जवाहर लाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र (Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), के वैज्ञानिकों की एक टीम, जो नाइट्राइड-आधारित सामग्रियों पर काम कर रही थी, ने न्यूरोमॉर्फिक कंप्यूटिंग के लिए हार्डवेयर विकसित करने के लिए अपनी पृष्ठभूमि का उपयोग किया है। उन्होंने स्कैंडियम नाइट्राइड (ScN) का उपयोग एक सिनैप्स की नकल करने वाले उपकरण को विकसित करने के लिए किया जो संकेत आवागमन (सिग्नल ट्रांसमिशन) को नियंत्रित करने के साथ ही साथ ही उसे याद भी रखता है।


धीमाही राव और उनकी टीम का यह काम स्कैंडियम नाइट्राइड (ScN) की पतली फिल्मों के साथ एक कृत्रिम ऑप्टोइलेक्ट्रॉनिक सिनैप्स को प्रदर्शित करता है जो अल्पकालिक स्मृति, दीर्घकालिक स्मृति, अल्पकालिक से दीर्घकालिक स्मृति में संक्रमण, सीखने-भूलने, आवृत्ति चयन जैसी सिनैप्टिक कार्यात्मकताओं से लेकर ऑप्टिकल फ़िल्टरिंग, फ्रीक्वेंसी-डिपेंडेंट पोटेंशिएशन एवं डिप्रेशन, हेबियन लर्निंग तथा लॉजिक-गेट ऑपरेशंस की नकल कर सकता है।


इसके अतिरिक्त अलग-अलग मैग्नीशियम (Mg) मादक (डोपेंट) सांद्रता के साथ ऐसे उत्तेजक [वर्तमान/अन्तर्ग्रथनी (सिनैप्टिक) शक्ति में वृद्धि] और निरोधात्मक [वर्तमान/अन्तर्ग्रथनी ( सिनैप्टिक) शक्ति में कमी] दोनों संचालन एक ही सामग्री में प्राप्त किए जा सकते हैं जो अन्य सामग्रियों के साथ आसानी से संभव नहीं है। स्कैंडियम नाइट्राइड ( ScN) में प्रतिरोधकता (नकारात्मक फोटोकंडक्टिविटी) में वृद्धि और चमकते प्रकाश पर मैग्नीशियम ( Mg )  आलेपित ( डोप्ड ) स्कैंडियम नाइट्राइड ( ScN)  में प्रतिरोधकता (सकारात्मक फोटोकंडक्टिविटी ) में कमी क्रमशः सिनैप्स की उत्तेजक और निरोधात्मक प्रकृति के रूप में उपयोग की गई थी। प्रकाश को बंद करने के बाद फोटोकंडक्टिविटी में दृढ़ता एक स्मृति के रूप में कार्य करती है जो उत्तेजनाओं की प्रकृति के आधार पर कई मिनट से कई दिनों तक चलती है। यह कार्य सीएमओएस  चिप-संगत समूह-III  नाइट्राइड सेमीकंडक्टर के साथ ऑप्टोइलेक्ट्रॉनिक सिनैप्स का पहला प्रदर्शन है ।


ऑप्टोइलेक्ट्रॉनिक सिनैप्स को प्रदर्शित करने के लिए उपयोग की जाने वाली मौजूदा सामग्रियों की तुलना में, स्कैंडियम नाइट्राइड ( एससीएन ) अधिक स्थिर एवं  सीएमओएस  संगत है, और इसे वर्तमान  एसआई (Si)  तकनीक के साथ मूल रूप से एकीकृत किया जा सकता है। यह उत्तेजक और निरोधात्मक दोनों कार्यों के लिए एक ही मंच के रूप में कार्य कर सकता है। स्कैंडियम नाइट्राइड ( एससीएन ) की औद्योगिक प्रसंस्करण तकनीकें मौजूदा सेमीकंडक्टर फैब्रिकेशन इन्फ्रास्ट्रक्चर के समान हैं। ऑप्टिकल उत्तेजनाओं की प्रतिक्रिया में इलेक्ट्रॉनिक सर्किट की तुलना में उच्च गति और व्यापक बैंडविड्थ के लिए जाने जाने वाले फोटोनिक सर्किट के साथ संभावित एकीकरण का यह लाभ भी है ।


जवाहरलाल नेहरू सेंटर फॉर एडवांस्ड साइंटिफिक रिसर्च – जेएनसीएएसआर) में कार्यरत सहायक प्रोफेसर डॉ. बिवास साहा ने कहा कि,  "हमारा काम एक स्थिर, मापनीय ( स्केलेबल ) और सीएमओएस-संगत III-नाइट्राइड सेमीकंडक्टर के साथ न्यूरोमॉर्फिक कंप्यूटिंग अनुसंधान को सक्षम बनाता है जो उत्तेजक और निरोधात्मक सिनैप्टिक कार्यात्मकता दोनों को प्रदर्शित करता है। ऑल-इलेक्ट्रॉनिक सिनैप्स पर पिछले कार्यों के विपरीत, हमारा काम एक बड़े बैंडविड्थ, कम आरसी देरी और कम बिजली की खपत के साथ एक ऑप्टोइलेक्ट्रॉनिक सिनैप्स दिखाता है। जेएनसीएएसआर  के अलावा, सिडनी विश्वविद्यालय के शोधकर्ताओं (डॉ. मैग्नस गारब्रेक्ट और डॉ. आशा आई. के. पिल्लई) ने भी हाल ही में वैज्ञानिक पत्रिका एडवांस्ड इलेक्ट्रॉनिक मैटेरियल्स में प्रकाशित इस अध्ययन में भाग लिया ।

Artificial synapse developed for brain-like computing with industry-compatible Nitride Semiconductors

Scientists have used scandium nitride (ScN), a semiconducting material with supreme stability and Complementary Metal-Oxide-Semiconductor (CMOS) compatibility, to develop brain-like computing. This invention can provide a new material for stable, CMOS-compatible optoelectronic synaptic functionalities at a relatively lower energy cost and hence has the potential to be translated into an industrial product.

The traditional computers have physically separated memory storage and processing units. As a result, it takes enormous energy and time to transfer data between these units during an operation. On the contrary, the human brain is a supreme biological computer that is smaller and more efficient due to the presence of a synapse (the connection between two neurons) that plays the role of both processor and memory storage unit. In the current era of artificial intelligence, the brain-like computing approach can help meet the escalating computational demands. The development of neuromorphic hardware aims at mimicking a biological synapse that monitors and remembers the signal generated by the stimuli. Scientists have been trying to create an artificial synaptic device that does not suffer from RC delays, exhibits large bandwidth, consumes low energy, and is stable, scalable, and CMOS-compatible.

A team of scientists at Bengaluru’s Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), an autonomous institute of the Department of Science and Technology, Government of India, who were working on nitride-based materials have used their background for developing hardware for neuromorphic computing. They used ScN to develop a device mimicking a synapse that controls the signal transmission as well as remembers the signal.

This work by Dheemahi Rao and team demonstrates an artificial optoelectronic synapse with ScN thin films that can mimic synaptic functionalities like short-term memory, long-term memory, the transition from short-term to long-term memory, learning–forgetting, frequency selective optical filtering, frequency-dependent potentiation and depression, Hebbian learning, and logic-gate operations.

Additionally, with varying magnesium (Mg) dopant concentrations, both excitatory (increase in current/synaptic strength) and inhibitory (decrease in current/synaptic strength) operations can be achieved in the same material that is not readily possible with other materials. The increase in resistivity (negative photoconductivity) in ScN and decrease in resistivity (positive photoconductivity) in Mg-doped ScN on shining light was used as the excitatory and inhibitory nature of the synapse, respectively. The persistence in the photoconductivity after turning off the light acts as a memory that lasts for several minutes to several days, depending on the nature of the stimuli. This work is the first demonstration of an optoelectronic synapse with a CMOS chip-compatible group-III nitride semiconductor.


Compared to the existing materials used to demonstrate optoelectronic synapse, ScN is more stable, CMOS compatible, and can be seamlessly integrated with existing Si technology. It can act as a platform for both excitatory and inhibitory functions. The industrial processing techniques of ScN are similar to the existing semiconductor fabrication infrastructure. Response to the optical stimuli also has the advantage of possible integration with photonic circuits known for higher speed and broader bandwidth than electronic circuits.

“Our work enables neuromorphic computing research with a stable, scalable, and CMOS-compatible III-nitride semiconductor that exhibits both excitatory and inhibitory synaptic functionalities. Unlike the previous works on all-electronic synapse, our work shows an optoelectronic synapse with a large bandwidth, reduced RC delays, and low power consumption.”- said Dr.BivasSaha, Assistant Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. Apart from JNCASR, researchers from the University of Sydney (Dr. Magnus Garbrecht and Dr. Asha I. K. Pillai) also participated in this study published recently in the scientific journal Advanced Electronic Materials. 


Comments

Popular posts from this blog

राजस्थान का प्रसिद्ध हुरडा सम्मेलन - 17 जुलाई 1734

हुरडा सम्मेलन कब आयोजित हुआ था- मराठा शक्ति पर अंकुश लगाने तथा राजपूताना पर मराठों के संभावित आक्रमण को रोकने के लिए जयपुर के सवाई जयसिंह के प्रयासों से 17 जुलाई 1734 ई. को हुरडा (भीलवाडा) नामक स्थान पर राजपूताना के शासकों का एक सम्मेलन आयोजित किया गया, जिसे इतिहास में हुरडा सम्मेलन के नाम  जाता है।   हुरडा सम्मेलन जयपुर के सवाई जयसिंह , बीकानेर के जोरावर सिंह , कोटा के दुर्जनसाल , जोधपुर के अभयसिंह , नागौर के बख्तसिंह, बूंदी के दलेलसिंह , करौली के गोपालदास , किशनगढ के राजसिंह के अलावा के अतिरिक्त मध्य भारत के राज्यों रतलाम, शिवपुरी, इडर, गौड़ एवं अन्य राजपूत राजाओं ने भाग लिया था।   हुरडा सम्मेलन की अध्यक्षता किसने की थी- हुरडा सम्मेलन की अध्यक्षता मेवाड महाराणा जगतसिंह द्वितीय ने की।     हुरडा सम्मेलन में एक प्रतिज्ञापत्र (अहदनामा) तैयार किया गया, जिसके अनुसार सभी शासक एकता बनाये रखेंगे। एक का अपमान सभी का अपमान समझा जायेगा , कोई राज्य, दूसरे राज्य के विद्रोही को अपने राज्य में शरण नही देगा ।   वर्षा ऋतु के बाद मराठों के विरूद्ध क

Baba Mohan Ram Mandir and Kali Kholi Dham Holi Mela

Baba Mohan Ram Mandir, Bhiwadi - बाबा मोहनराम मंदिर, भिवाड़ी साढ़े तीन सौ साल से आस्था का केंद्र हैं बाबा मोहनराम बाबा मोहनराम की तपोभूमि जिला अलवर में भिवाड़ी से 2 किलोमीटर दूर मिलकपुर गुर्जर गांव में है। बाबा मोहनराम का मंदिर गांव मिलकपुर के ''काली खोली''  में स्थित है। काली खोली वह जगह है जहां बाबा मोहन राम रहते हैं। मंदिर साल भर के दौरान, यात्रा के दौरान खुला रहता है। य ह पहाड़ी के शीर्ष पर स्थित है और 4-5 किमी की दूरी से देखा जा सकता है। खोली में बाबा मोहन राम के दर्शन के लिए आने वाली यात्रियों को आशीर्वाद देने के लिए हमेशा “अखण्ड ज्योति” जलती रहती है । मुख्य मेला साल में दो बार होली और रक्षाबंधन की दूज को भरता है। धूलंड़ी दोज के दिन लाखों की संख्या में श्रद्धालु बाबा मोहन राम जी की ज्योत के दर्शन करने पहुंचते हैं। मेले में कई लोग मिलकपुर मंदिर से दंडौती लगाते हुए काली खोल मंदिर जाते हैं। श्रद्धालु मंदिर परिसर में स्थित एक पेड़ पर कलावा बांधकर मनौती मांगते हैं। इसके अलावा हर माह की दूज पर भी यह मेला भरता है, जिसमें बाबा की ज्योत के दर्शन करन

Civilization of Kalibanga- कालीबंगा की सभ्यता-
History of Rajasthan

कालीबंगा टीला कालीबंगा राजस्थान के हनुमानगढ़ ज़िले में घग्घर नदी ( प्राचीन सरस्वती नदी ) के बाएं शुष्क तट पर स्थित है। कालीबंगा की सभ्यता विश्व की प्राचीनतम सभ्यताओं में से एक है। इस सभ्यता का काल 3000 ई . पू . माना जाता है , किन्तु कालांतर में प्राकृतिक विषमताओं एवं विक्षोभों के कारण ये सभ्यता नष्ट हो गई । 1953 ई . में कालीबंगा की खोज का पुरातत्वविद् श्री ए . घोष ( अमलानंद घोष ) को जाता है । इस स्थान का उत्खनन कार्य सन् 19 61 से 1969 के मध्य ' श्री बी . बी . लाल ' , ' श्री बी . के . थापर ' , ' श्री डी . खरे ', के . एम . श्रीवास्तव एवं ' श्री एस . पी . श्रीवास्तव ' के निर्देशन में सम्पादित हुआ था । कालीबंगा की खुदाई में प्राक् हड़प्पा एवं हड़प्पाकालीन संस्कृति के अवशेष प्राप्त हुए हैं। इस उत्खनन से कालीबंगा ' आमरी , हड़प्पा व कोट दिजी ' ( सभी पाकिस्तान में ) के पश्चात हड़प्पा काल की सभ्यता का चतुर्थ स्थल बन गया। 1983 में काली